Linear Weingarten surfaces in Euclidean and hyperbolic space

نویسنده

  • Rafael López
چکیده

In this paper we review some author’s results about Weingarten surfaces in Euclidean space R 3 and hyperbolic space H 3 . We stress here in the search of examples of linear Weingarten surfaces that satisfy a certain geometric property. First, we consider Weingarten surfaces in R 3 that are foliated by circles, proving that the surface is rotational, a Riemann example or a generalized cone. Next we classify rotational surfaces in R 3 of hyperbolic type showing that there exist surfaces that are complete. Finally, we study linear Weingarten surfaces in H 3 that are invariant by a group of parabolic isometries, obtaining its classification. MSC: 53C40, 53C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotational linear Weingarten surfaces of hyperbolic type

A linear Weingarten surface in Euclidean space R 3 is a surface whose mean curvature H and Gaussian curvature K satisfy a relation of the form aH + bK = c, where a, b, c ∈ R. Such a surface is said to be hyperbolic when a + 4bc < 0. In this paper we classify all rotational linear Weingarten surfaces of hyperbolic type. As a consequence, we obtain a family of complete hyperbolic linear Weingarte...

متن کامل

Parabolic Weingarten surfaces in hyperbolic space

A surface in hyperbolic space H 3 invariant by a group of parabolic isometries is called a parabolic surface. In this paper we investigate parabolic surfaces of H 3 that satisfy a linear Weingarten relation of the form aκ1 + bκ2 = c or aH + bK = c, where a, b, c ∈ R and, as usual, κi are the principal curvatures, H is the mean curvature and K is de Gaussian curvature. We classify all parabolic ...

متن کامل

Linear Weingarten Helicoidal Surfaces in Isotropic Space

Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E3 is a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation Φ(H, K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean curvature surfaces, ...

متن کامل

Complete Linear Weingarten Surfaces of Bryant Type. a Plateau Problem at Infinity

In this paper we study a large class of Weingarten surfaces which includes the constant mean curvature one surfaces and flat surfaces in the hyperbolic 3-space. We show that these surfaces can be parametrized by holomorphic data like minimal surfaces in the Euclidean 3-space and we use it to study their completeness. We also establish some existence and uniqueness theorems by studing the Platea...

متن کامل

Discrete Flat Surfaces and Linear Weingarten Surfaces in Hyperbolic 3-space

We define discrete flat surfaces in hyperbolic 3-space H from the perspective of discrete integrable systems and prove properties that justify the definition. We show how these surfaces correspond to previously defined discrete constant mean curvature 1 surfaces in H, and we also describe discrete focal surfaces (discrete caustics) that can be used to define singularities on discrete flat surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009